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Resistive instabilities may be controlled by wall stabilisation or magneto-viscous damping. 
From a mathematical model based on MHD equations involving resistivity and parallel ion 
viscosity, a special purpose computer code has been developed to trace the disturbances of 
cylindrical equilibria surrounded by conducting walls. Another code, using general purpose 
collocation software to exploit robust time integrators via the numerical method of lines, may 
be extended to more sophisticated models. Magneto-viscous reduction of resistive growth 
rates, due to parallel ion viscosity and independent of conducting wall stabilisation, is most 
pronounced for smaller axial wavelengths and higher plasma temperatures. 0 1986 Academic 

Press. Inc. 

1. INTRODUCTION 

Plasma instabilities remain a major obstacle for the magnetic confinement 
approach to a thermonuclear reactor, and large-scale magneto-hydrodynamic 
(MHD) modes in particular can be most destructive. Tokamak configurations, with 
toroidal magnetic flux surfaces created by large applied longitudinal fields and 
limited longitudinal current, have been investigated extensively. There are also 
alternative diffuse pinch schemes that deserve more attention. The “reverse-field- 
pinch” can be ideal MHD stable at values of beta, the plasma pressure to magnetic 
pressure ratio, almost ten times the few percent typical of tokamaks (Robinson [ 11, 
Bodin and Newton [2]). The related compact spheromak also relies less on expen- 
sive external applied magnetic fields than do tokamaks or stellarators (Rosenbluth 
and Bussac [3]). 

Disturbances occur in the experimental devices, however, even if their magnetic 
field configurations are stable according to ideal MHD theory. These residual dis- 
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turbances have been attributed to finite plasma conductivity (nonzero resistiuity), 
which permits access to lower potential energy states that are topologically 
inaccessible in ideal theory (Furth, Killeen, and Rosenbluth [4]). Tearing (resistiue 
kink or current-driven) instabilities arise in current carrying plasma, and resistiue 
interchange (pressure-driuen) instabilities occur despite magnetic field shear, to 
further limit the plasma beta. (In toroidal geometry, pressure-driven instabilities 
found in regions of unfavourable magnetic field curvature are called ballooning 
modes.) These tearing or resistive interchange instabilities can produce large-scale 
plasma displacements that proceed much faster than classical resistive diffusion. A 
third type of resistive instability known as rippling, which may occur near the 
plasma boundary, shall not be considered in this paper. 

Theoretically, there are ways to avoid or control resistive instabilities. For exam- 
ple, tearing may be avoided in tokamaks by a rather more stringent limit on the 
longitudinal plasma current, corresponding to a “safety factor” q(r) = rB,,/RB,, 
everywhere greater than about 3 (where r is the minor radius and R the major 
radius of the torus, B,, is the applied longitudinal or “toroidal” magnetic field, and 
B,, is the azimuthal or “poloidal” magnetic field generated by the plasma current). 
The high current, high magnetic field shear reverse-field-pinch devices typically 
have q(r) values much less than 1, but tearing nevertheless may be controlled when 
there is a conducting wall close enough to the plasma (Robinson [S]). The 
inclusion of ion magneto-viscosity may also stabilise both tearing and resistive 
interchange modes in cylindrical geometry; parallel viscosity terms dependent on 
magnetic field curvature are important (Hosking [6], Hosking and Robinson [7]). 
Both wall and magneto-viscous stabilisation may be studied by computer codes, as 
outlined in this paper. 

Computer codes are now widely used to simulate the evolution of magnetic field 
configurations. The growing complexity of stability analysis, which is compounded 
as the plasma model is extended to include nonideal effects in realistic geometries, 
has motivated our interest in developing the two codes briefly described in this 
paper. The first is a traditional special purpose routine to trace the linear departure 
from cylindrical equilibria (viz. VISCODE), as defined by MHD equations incor- 
porating resistivity and parallel ion viscosity (cf. Dibiase and Killeen [8]). A 
second code (PDECODE), based on general purpose collocation software to 
exploit available robust ordinary differential equation integrators via the numerical 
method of lines, more readily allows extension to other nonideal processes. Our 
experience in running these codes on quite modest computers (viz. PDP DEC-10 
and VAX) leads us to expect such extensions to be quite feasible as available com- 
puter power increases. 

The visco-resistive model summarised in Section 2 can in principle describe 
various magneto-plasma regimes; but we have chosen to adopt classical collisional 
transport coefficients, for the preliminary study of reverse-field-pinch configurations 
described in this paper. The equilibrium and perturbation equations are sum- 
marised in Section 3, and a qualitative analysis of anticipated viscous stabilisation is 
given in Section 4. The cylindrical equilibria studied appear in Section 5, followed 
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by a brief discussion of the chosen boundary and initial conditions for the study. 
The essential six scalar equations for the perturbation fields are summarised in Sec- 
tion 6, and the plasma parameters we adopted are then listed. VISCODE is briefly 
described in Section 7, and PDECODE in Section 8. Finally, the results obtained in 
applying these codes to the model reverse-field-pinch configurations are sum- 
marised in Section 9. 

2. MATHEMATICAL MODEL 

The Eulerian form of the magnetohydrodynamic (MHD) equations used to 
model the visco-resistive plasma include 

(2.1) 

p(g+v-Vv)+V-p=jxB, (2.2) 

E+vxB=bj, (2.3) 

V x B = p,,j, (2.4) 

V*B=O, (2.5) 

where p is the mass density, v is the fluid velocity, p is the plasma pressure tensor, j 
is the electric current density, B is the magnetic induction, E is the electric field, (r is 
the plasma conductivity, and p0 the magnetic permeability. 

We augment Eqs. (2.1k(2.6) by the adiabatic equation of state and plasma con- 
stitutive relationship as follows: 

14 Y dp 
--=--3 p dt p dt (2.7) 

and for each plasma specie 

p=pI+t. (2.8) 

Here y is the ratio of specific heats (y = co is the incompressible limit); and the non- 
hydrostatic part of the stress tensor t, for a sufficiently strong magnetic field, is the 
expansion ordered in increasing powers of (a,~)-1 << 1 (where o, is the cyclotron 
frequency and z a collision time): 

t=t,,+tL+tl+ “‘, 
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where 

t,, = -3p,,s: bb{bb) parallel component, 

t L = -(“{sxb+6{s*bb}xb} 
a 

(“collisionless”) FLR component, 

t I = -+s+6{s*bb}-%bb{bb}) 
2a2 2 . 

perpendicular component, 

with p,, the (parallel) viscosity coefficient, the braces { > denoting the traceless part 
of the enclosed dyadic, s the “deformation tensor,” and b = B/B1 the local magnetic 
field direction (cf. Hosking and Marinoff [9]). 

We are primarily interested in the parallel ion viscosity for it is the dominant part 
for high temperature magneto-plasma with approximately equal ion and electron 
temperatures, and may stabilise the resistive instabilities. (Parameter a N o,z 9 1 for 
most plasmas of interest, so the so-called FLR and perpendicular viscosity com- 
ponents are ordered smaller. Electron viscosity contributions would enter the 
generalised Ohm’s law (2.3) if included, but are omitted from the equation of 
motion (2.2) because ion collisions are relatively more important [IS].) We 
anticipate that the parallel viscosity coefficient (p,,) rapidly increases with tem- 
perature, as the collisions produce increasing particle momentum exchange along 
the field lines; see Section 6. For the ions, from the simple form of the deformation 
tensor. 

s= {Vv] =f(Vv+vV)-p-v1 

we have the parallel viscosity contribution: 

where 

t,, = -3,u,,,s(bb+I), (2.9) 

srs:bb=b.V(v.b)-v.(b*Vb)-$V.v (2.10) 

and I denotes the unit dyadic. The second term in s, proportional to the magnetic 
field curvature, ensures that the parallel viscosity affects even near-incompressible 
disturbances (V * v N 0) in the neighbourhood of mode rational surfaces (where the 
first term is small). 

3. EQUILIBRIUM AND PERTURBATION EQUATIONS 

The plasma equilibria of interest are specified by v,, 1: 0, and prescribed functions 
that must satisfy the equilibrium field equations, 

VP, = p,y ‘(V x J.4,) x B,, 

V.Bo=O. 

(3.1) 

(3.2) 
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For a static equilibrium (vO = 0), strictly speaking there is also the condition V x 
(qV x B,) =0 where q = (~,,a))’ denotes the zero-order resistivity, but in practice 
there is a negligible but finite equilibrium resistive diffusion velocity. Nevertheless, 
this equilibrium velocity is small enough for viscous terms to be omitted from the 
equilibrium pressure balance equation (3.1) together with inertia. 

We denote perturbation quantities by subscript 1, to distinguish them from 
equilibrium quantities with subscript 0. The linearised first-order visco-resistive 
equations for small disturbances from a chosen equilibrium are 

p,,~=p,l[(VxB,)xB,+(VxB,)xB,] 

-VP, -v-tr, (3.4) 

$=VX(V,XB,)-Vx(tjVxB,), (3.5) 

33 -$= -yp’pov’v, -vl*vp,. 

We are primarily interested in resistive modes driven by magnetic force terms in Eq. 
(3.4), but no first-order perturbation of the resistivity (leading to rippling 
instabilities) is included. In this paper, we also omit terms involving the zero-order 
velocity, which may be important (see, e.g., [lo]). These perturbation equations 
are to be solved subject to appropriate boundary conditions. 

4. VISCOUS STABILISA~ON 

The stabilising nature of magneto-viscosity for ideal or resistive modes can be 
demonstrated qualitatively as follows. Introducing Lagrangian displacement and 
magnetic vectors (with reference to the initial position r,,) defined by 

at at= vl(ro, t), E= B,h, t) 

and integrating with respect to time before eliminating pi and pl, we reduce the 
system of perturbation equations to 

P{+K{+D{=O. (4.1) 
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Here the dot denotes time derivative, 5 the column six-vector (5, R)=, and the coef- 
ficient matrices are (cf. also Barston cl l]), 

with the implicit linear operators 

L,<=v~h(~), 
L,R=p;l[Bo~(VxR)+Rx(VxB,)], 

L,R=Vx(tjVxR), 

L35=Vx(5xW, 

L45= -V(YPoV~5+5~VP,). 

Equation (4.1) is a generalised form for a dissipative system, with magneto-viscosity 
and resistivity in the dissipative coefficient matrix K, and the resistivity rendering 
the otherwise ideal MHD coefficient matrix D nondiagonal. For exponential time 
dependence ( weq’), from (4.1) we have the quadratic 

q2+2rcq+a=0 (4.2) 

with coefficients 

a= 

where the asterisk denotes a complex transpose and the integration is taken over 
the plasma volume U. Thus for K > 0 there is instability if and only if 
Re(lc’ - a)l” > K, which reduces to a c 0 for real a when there is no “overstability,” 
i.e., when there is no oscillatory growing mode. Equation (4.2) may be compared 
with the eigenvalue equation for an harmonic oscillator with damping coefficient K, 
except that the nett internal force represented by a is not normally restoring. 
Resistive tearing and magnetic interchange instabilities are driven by terms in the 
linear operator L1 contributing to matrix D, and thus to a. 

In this paper, we assume that the plasma volume is bounded by a rigid 
impenetrable perfectly conducting surface S (a wall). If ii denotes a unit normal on 
S, the physical boundary conditions at this boundary include vanishing fi. 5 (and 
other components of 5, in the presence of viscosity), i? * R (or R on all parts of S at 

581/66/2-3 
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infinity), and n x E, (so that ii x (V x R) vanishes). Thus on retaining the dominant 
parallel viscosity for example, we have the dissipative numerator 

j” e*.K{dT=f k*.L&dT+p,‘[ R*.LzRds 
u- u cl 

= (3p,,((bb-fI):VJJ2+p;1v]lVxR12)dz, J u 
(4.3) 

so that IC > 0. We expect the parallel viscosity term, supplementing the Ohmic dis- 
sipation in (4.3), to be particularly important for large-scale displacements at higher 
plasma temperatures. We did not observe overstability with our computer codes; 
any unstable mode we found to be purely growing, but damped by parallel ion 
viscosity (see later). The small growth rate predicted by Eq. (4.2) in the strongly 
damped limit is q N lal/2rc (Ial <<x2). 

5. CYLINDRICAL FLUX SURFACES 

Equilibrium cylindrical magnetic flux surfaces, the simplest case of (zero-order) 
magnetic field curvature, are in general defined by the magnetic field and associated 
current density of form 

(5.2) 

The pressure balance equation (3.1) reduces to 

(5.3) 

where the term on the right-hand side arises from field curvature. We consider 
reverse-field-pinch model equilibria to study wall and magneto-viscous stabilisation 
of current-carrying plasma. 

The force-free Lundquist [12] or “Bessel function model” (BFM) configuration 
is 

b(r) = &CJl(vr) e0 + Jdvr) cl, (5.4) 

where J,, and Jr are Bessel functions of the first kind, constant B, is a measure of 
the field strength, and v a measure of the field shear. Another analytic model 
(FHM) due to Freidberg and Hewett [13] is 

B,(r) = B,[&(x - & alx3) e, + (1 - & u~x*)~/*( 1 - & ax*) e,] (5.5) 
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so that 

Here x= r/rP with rP the plasma radius, and constants to satisfy the pressure 
balance equation (3.1) as functions of the single parameter tl are 

al = $a(8 - 5x), 

a2 = 4( 8 - 5x)*, 

a3=$$&+1)(c+$). 

We can set a = 1 for a force-free equilibrium (dp,/dx = 0) similar to the BFM, to 
compare the stability of the two model equilibria. Since the BFM does not include 
a parallel current gradient driving term, it might be anticipated that the FHM is 
less stable [S, 133. The equilibrium profile for the BFM with v = 1 is shown in Fig. 
la; provided the conducting wall radius R, -C 5.52, there is only one field reversal in 
B,,. For comparison, an equilibrium profile for the FHM (with LY = 1, R, = 3) is 
shown in Fig. lb. 

In cylindrical geometry, we assume normal modes of form: 

f,(r, t) ei(me+k~z). 

Referring to Eqs. (3.3)-(3.6), we find there are six coupled scalar equations to solve 
in Bl,(r, f), Bdr, 11, ul,(r, t), udr, t), u,Ar, t), and pt(r, 0. (The remaining 
variables p,(r, t) and Bl,(r, t) may subsequently be determined from (3.3) and 

1 

-1 b I I 

0 1 2 

FIG. 1. (a) Bessel function model: equilibrium magnetic fields. (b) Freidberg-Hewett model: 
equilibrium magnetic fields. 
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V *Br = 0.) We solve these equations on the domain 0 <r< R,, subject to the 
appropriate conditions. 

At r = 0 for any time t, there are the symmetry conditions (cf. Dibiase and Killeen 
i-81): 

m = 0, B,, = BIe = vIr = vIo = 0, (5.7) 

a~,, ai+ o -z-z ) 
ar ar 

m= 1, ah ah, ah ahe o 
-=-=-=-= , ar Lb ar ar 

vh=pl =o, 

m 2 2, B,, = Ble = vIr = vie = vIr =pl = 0. 

(5.8) 

(5.9) 

At r = R,, for all modes at any time t: 

BI,=v,,=p, =O, 

(5.12) 

(5.13) 

The basic physical conditions for (5.10)-(5.13) are vanishing normal components of 
perturbed magnetic field and perturbed velocity, and vanishing tangential perturbed 
electric field, at the rigid perfectly conducting wall. As in earlier work [8], it is also 
assumed that the perturbed radial current density is negligible near the wall, and 
the equilibrium pressure p. and density p0 tend to zero as r + R,. We note that the 
last two conditions (5.12) and (5.13) imply that the perturbed velocity parallel to 
the (zero-order) equilibrium magnetic field vanishes at the wall, as might be 
anticipated for a plasma model that incorporates parallel viscosity. 

The assumption of negligible perturbed radial current density in the plasma near 
the wall, previously made in the context of high plasma conductivity [S], may also 
be viewed as suitable if the plasma has small conductivity near the wall (i.e., 
q(R,) + co). One may, for example, consider an insulating liner [13], or that the 
plasma is otherwise (vacuum) insulated from the wall [14]. 

To begin the calculation, we assume an initial nonzero perturbation for at least 
one of the dependent variables, usually vJr, 0). The evolution of the dependent 
variables should ultimately be independent of the initial perturbation, within the 
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linearisation assumption of the basic perturbation equations (3.3t(3.6). For the 
fast growing kink mode m = 1, we chose 

u&, 0) = cc0 [l-&J]; 
and otherwise (m # 1) we chose 

ul,(r, 0) = eCco 
&[I-(gl* 

(5.14) 

(5.15) 

The parameter c,, (say 50) is chosen to ensure that the perturbations remain suf- 
ficiently small, during the evolution study. These initial perturbation forms were 
(inter alia) used by Dibiase and Killeen [S]; and we also found that the evolution 
was ultimately independent of the choice made, but the initial perturbation profiles 
(5.14) and (5.15) usually provided a smooth development of the dependent variable 
profiles. 

6. DIMENSIONLESS EQUATIONS: PARALLEL VISCOSITY 

We follow Dibiase and Killeen [S] by writing the basic plasma equations in 
dimensionless form, in terms of the following variables: 

W= -ikTRvlr, U= kTRvlo, 

V= kTRvlz, PC%, 

where a is a characteristic length which is usually a measure of the current layer 
thickness; rR = a*/( ‘1) is the resistive diffusion time; and B, (q) and (p) are 
characteristic values for the magnetic field, plasma resistivity and pressure, respec- 
tively. Resistive instabilities grow on a time scale shorter than the resistive diffusion 
time rR, but longer than the hydromagnetic time zH = aJ,uo<p>iB, where (p) is a 
characteristic plasma density. 

The following dimensionless coupled equations obtained from (3.3)-(3.6) may be 
used to study the effect of parallel ion viscosity on resistive interchange and tearing 
modes, 

(6.1) 
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(6.2) 

~=(N-~)~-(;H+ti,M)~ 

H i?W W m 
+- 

( 
-+-+- u+lc;v 

a ap P P > 

++-g9 

~~=[~(~=H-%~)-~]J-M(L~)-~‘~ 

+[;($-hi”)+++;)]~+(~~H-;M)$+k$ 

+~~t(~+~~-[2~*~+~(~-~)2]~ w 

-[;(.f+)+Kzf2f3]g-[;f2f3+Kz(f+)]g 

-[;(2f2fd(+2)+Kz(f;f3+f2f;+~)] u 

~(1:-;))++yfc~)+2f3fi)]v}, 

HOSKING AND TENDYS 

u+K,v +E w, 
ci 

(6.3) 

(6.4) 

(6.5) 

(6.6) 
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where the operator 

Equations (6.1~(6.6) involve the dimensionless wavenumber c1= ka and axial 
wavenumber rcz= k,a; the magnetic Reynolds (or Lundquist) number S=r,/z,; 
and the dimensionless viscosity parameter r = 7,~ ,, /a’ ( p ). The equilibrium con- 
figuration studied defines the input functions, 

and the prime denotes differentiation with respect to p. Equations (6.1 t(6.6) can be 
solved numerically in 0 <p dpW (where p,,, = &/a), subject to the dimensionless 
boundary conditions corresponding to (5.7~( 5.13). These equations could be 
modified to include other magneto-viscous or nonideal effects. ;The characteristic 
plasma parameters adopted were 

Resistivity, 
In ;1 

c-l= 1.29~10~’ 
~312 

Q cm, 

I 

1.239 x IO4 $, T < 4.2 x lo5 “K, 
Coulomb collision parameter, A., = 

8.030 x lo6 -$, T > 4.2 x 10’ “K > 

Viscosity (parallel), r= 1.117 x 1o-3 
P 

n(ln A,)* 

Magnetic Reynolds number, s= 
aBT312 

0.2122 n’,2 ln &, 

Plasma beta, fi= 3.469x 10-“$, 

Equilibrium density profile, P(P) = 1, 

Equilibrium resistivity profile, 4(P) = 1, 

in which the physical units adopted are n = #/cm3, T= “K, B = G, a = cm. 



286 HOSKING AND TENDYS 

7. VISCODE 

A fully implicit finite difference code (VISCODE) of traditional type is described 
in this section. An implicit scheme is suitable for complicated systems of parabolic 
or mixed type, on numerical stability grounds [ 151. The algorithm for linear 
tridiagonal systems used by Dibiase and Killeen [S] was implemented for 
efficiency. 

The continuous domain (0 < p < ,u~, r > 0) on which the basic perturbation 
equations (6.1~( 6.6) hold is represented by a discrete space-time mesh, 

pi =j4, j=O, l,..., J, 

f’ = ndt, n = 0, 1) 2 )... . 

The 6 partial differential equations are replaced by a system of 6J algebraic (finite 
difference) equations, which may be solved at successive time-steps (n values) for 
the dependent variables 

Space variations are approximated by central differences with implicit weight fat- 
tor 1 (for numerical stability, 4 < 16 1). Thus, if X denotes any dependent variable, 
space variations are 

Time variations are simply 

$=(Ar)-‘[X;+‘-X;]. 

The system of finite difference equations may be written 

-A,X~=I’+B,X~+‘-CjX~~,‘=d~, (7.1) 

where the 6 x 6 matrices A, B, and C are functions of position (pj) only, the input 
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6-vector d is 
step, and 

also a function of the dependent variables known at the nth time- 

-*- 
4 
W 

X= 
u 
V 
P- 

is to be computed at the (n + 1)th time step for each of the space gridpointsj= l,..., 
J- 1 (given the boundary conditions incorporated at j = 0, J, respectively). 

The algorithm used to solve the system (7.1) is (cf. [S] ), 

X?+‘=E.X?+‘+F? 
J J /+I J’ 

j=O, l,..., J- 1, 

where 

Ej= (Bj- CjEj-l)-’ Aj, 

y=(l$-CjEj-,)-‘(d;+C&,), 

for j= 1, 2,..., J- 1. The boundary conditions at p = 0, in finite difference form, are 
used to determine E,, and F”,. The expensive matrix inversion and subsequent 
generation of Ej is completed before initiating the time-step procedure; which 
proceeds by a space-sweep forward to calculate FJ’ for j= l,..., J- 1 (at successive 
n = 0, l,...), followed by a backward sweep (with j = J- l,..., 1) to calculate X7+ ’ 
for j = O,..., J- 1. 

8. PDECODE 

Any traditional algebraic finite difference code, such as VISCODE, requires a 
considerable effort to implement. Although special purpose codes may meet special 
features of a mathematical problem, modern general purpose software can 
significantly reduce the initial work required and have other advantages [16]. In 
particular, we are especially interested in future extensions to more sophisticated 
mathematical models; and prefer to avoid the pre-processing translation (even with 
the possible help of a symbolic compiler) to finite difference form, implicit in 
VISCODE alterations. 

In this section, we outline the second code (PDECODE) which has been applied 
in the present context, but may be extended more readily than VISCODE. The 
development of PDECODE to date required less than 25% of the analytical and 
programming effort of VISCODE, and has proven to be of comparable efficiency. 
PDECODE also incorporates user choice of error tolerance with automaic time- 
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step adjustment, and some user choice of integrator algorithm for the underlying 
ordinary differential equation format produced by the numerical method of lines. 
For example, since the system of ordinary differential equations produced in our 
application is typically stiff, the user may choose a suitable integrator algorithm. 

PDECODE exploits a general purpose computer software package for 
numerically solving a system of coupled partial differential equations, called 
PDECOL [17]. The package PDECOL implements semi-discretization (via the 
method of lines) with finite element collocation by piecewise polynomials based on 
B-splines for the space dimension, leaving the time dimension for solution by the 
chosen associated integrator. (PDECOL is a collection of 19 FORTRAN sub- 
routines, so is quite portable.) The user supplied subroutines directly represent the 
original perturbation equations (6.1)-(6.6), the original boundary conditions 
(5.7k(5.13), and the original initial conditions (5.14) and (5.15). No user trans- 
lation of the basic mathematical problem, for example into finite difference form as 
in the case of VISCODE, is necessary. We did choose the analytic option for the 
Jacobian of the system (6.1)-(6.6) however, for computational efficiency. The only 
significant modification of the package PDECOL we considered was to introduce 
an alternative Runge-Kutta time integrator STRIDE [IS], to improve efficiency 
with large time-steps for moderate error tolerances compared with the Gear 
backward difference algorithms (for stiff problems) supplied with the PDECOL 
package. STRIDE is suitable for stiff problems, and uses a family of singly-implicit 
Runge-Kutta methods [ 191 implemented using a transformation given by Butcher 
WI. 

We obtained results from PDECODE, for the mathematical problem defined in 
Sections 5 and 6, consistent with results obtained from VISCODE. We had 
anticipated that these codes could be run successfully for low to intermediate values 
of magnetic Reynolds number S, and in fact found we could obtain results for 
Ss 105. Profile broadening when viscosity is included evidently offsets to some 
extent our present restriction to a fairly course uniform space mesh. We limited our 
attention to low m modes, primarily m =0 and m = 1. The main difficulty we 
experienced arose with computations for smaller values of the axial wavenumber k;. 

9. APPLICATIONS 

We chose to test VISCODE and PDECODE with the related BFM and FHM 
(a = 1) equilibria defined in Section 5. The results we obtained for each equilibrium 
were qualitatioely similar, as summarised below. We sought to compare our results 
with corresponding computations by Killeen and others [8, 143. We also found 
only purely growing (or decaying) modes with similar time variation and pertur- 
bation profiles, although our mathematical model includes parallel viscosity (and 
the adiabatic assumption), and so is different. For all computations we used the 
specific heat ratio y = s, the particle number density n = 10” cmp3 and magnetic 
field strength B = 1950 G. 
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cl=1 k,=O 4 
n = lOI cm-3 
T=161 eV 
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FIG. 3. Bessel function model: growth ratep over a range of temperature r, for various wall radii 
m = 1 visco-resistive kink). 
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We did find that the fast m = 1 kink mode is sensitive to a nearby conducting 
wall. The sharp cut-off is illustrated in Fig. 2, and the general reduction of growth 
rate with decreasing wall radius R, over a range of plasma temperature is shown in 
Fig. 3, for the BFM (cf. also [S]). However, in addition we found significant 
stabilisation due to parallel ion viscosity, whatever the position of the conducting 
wall. 

Representative results are shown in Figs. 4a and b, for the BFM and FHM 
equilibria, respectively. Although the slower m = 0 mode is relatively unaffected, the 
growth rate of the m = 1 kink mode can be significantly reduced by parallel ion 
viscosity. We noted that magneto-viscous stabilisation is most noticeable at shorter 
wavelengths (i.e., larger wavenumbers k,) and this is increasingly so as the plasma 
temperature increases. For the BFM equilibrium, we have chosen to show the 
somewhat unrealistically large wall radius case (R, = 5.5), partly to allow com- 
parison with the earlier work [8, 141 and partly to gauge the importance of the 

Radius of ronductlng wall =5 5 

Plosmo number density = 10'5cm 

T =167eV 

---y------y-=---~t 

0.4 

kz 

06 08 

FIG. 4. (a) Bessel function model: growth ratep versus axial wavenumber k,, for m =O, 1, visco- 
resistive modes (temperature parameter T). (b) Freidberg-Hewett model: growth rate p versus axial 
wavenumber k,, for m = 1 visco-resistive kink mode (temperature parameter T). 
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FIG. +-Continued. 

parallel current gradient driving term (cf. Sect. 5). Thus the growth rates for the 
FHM are considerably larger, although the conducting wall radius in this case is 
much smaller (viz. R, = 3), but the results are qualitatively the same. As in Figs. 2 
and 3, the dimensionless growth ratep in Figs. 4a and b is normalised relative to 
the temperature-dependent resistive diffusion time zR [S]. 

Despite the first impression that may be given by Figs. 4a and b, for the classical 
transport coefficients adopted (cf. Sect. 6) the magneto-viscous stabilisation 
becomes significant at all wavelengths, as the plasma temperature increases. Near 
maximum growth rates in the BFM case of Fig. 4a, renormalised relative to the 
temperature-independent hydromagnetic time ?n, are plotted in Fig. 5 on a log-log 
scale against the magnetic Reynolds number S. We see that the growth rate for the 
m = 1 visco-resistive kink at k, = 0.2, computed from our adiabatic (y = s) model 
with parallel ion viscosity, is significantly less than the resistive growth rate at 
k, = 0.3 found by Shestakov, Killeen, and Schnack [ 141, for magnetic Reynolds 
numbers Sk 104. 
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W Reslstlve Camputatlon Shestokav, 

K~lleen & Schnork (19821 
p-~~(6-‘$tfor m=l,kz = 0 3 

0 VISCO Resistive Computation 
for m=l, kz :O 2 

FIG. 5. Bessel function model: near maximum growth ratep (rH normalised) versus magnetic 
Reynolds number S, for 112 = 1 modes. Note that the scales are logarithmic. 
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